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Relativistic Equations of Motion from Poisson
Brackets

Paul Bracken1

Received September 24, 1997

The inverse problem of Poisson dynamics is reviewed as well as a derivation of
the Maxwell equations from a postulated set of Poisson brackets. The formalism
is extended to the relativistic case by postulating Poisson brackets, as in the
nonrelativistic case, and using the relativistic Hamiltonian. A system of relativistic
equations of motion is obtained, and it is indicated that a system of consistency
conditions remains valid in this limit.

1. INTRODUCTION

Formulations of the Maxwell equations as well as the study of solutions

to them has been a subject of continued interest (Penrose, 1969). The impor-

tance of Yang±Mills theories likely has much to do with this. A very novel
approach, which effectively resulted in a form of derivation of the Maxwell

equations, was originally proposed by Feynman and some of the details were

given by Dyson (1990). Although the original intent was likely directed to

the physical problem of finding new kinds of particle dynamics, there has

evolved out of this an area of study which deals with a full set of dynamical
systems (Bracken, 1996, referred to as paper I). The problem which is

approached here can be stated in a general way as finding all Poisson tensors

on a phase space manifold such that they have Hamiltonian vector fields

which correspond to second-order differential equations such that {q i, q j} 5
0. It has also been shown in paper I that this procedure can be generalized

to the case of the dynamics of particles which possess other internal degrees
of freedom I a, in particular, the case in which the set of I a, generate a Lie
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algebra. In a similar manner, one postulates the Poisson brackets of the

particle and a Hamiltonian evolution.

The plan of the article is to review how the pair of Maxwell equations
arises from a basic set of fundamental Poisson brackets which may be postu-

lated (Abraham and Marsden, 1978). In order to obtain the correct dynamics

at the nonrelativistic level, one simply requires the basic Poisson brackets

and an equation which determines the dynamics. This will be duplicated by

next writing down an elementary Hamiltonian to generate equations of motion.

It will be shown that this procedure can be generalized to the relativistic case
in a rigorous way, in such a manner that there is manifest invariance under

Lorentz transformations. To this end, one can take the phase space with its

coordinate functions to define a differentiable manifold, and a Riemannian

manifold is obtained by introducing the usual Minkowski metric (Wells,

1979). All dynamical quantities here will be classical variables; no quantiza-

tion takes place.
Let us call ^ the algebra of classical observables on the manifold M.

A Poisson structure on a manifold M is a skew-symmetric bilinear map which

is denoted {,}: ^ 3 ^ ® ^ such that:

(i) (^, {,}) satisfies the Jacobi identity

{F, {G, H }} 1 {G, {H, F }} 1 {H, {F, G}} 5 0 (1)

(ii) The map XF 5 {,F } is a derivation of the associative algebra ^(}) on

M, that is, it satisfies the Leibnitz rule

{F, GH } 5 G {F,H } 1 {F,G}H (2)

A manifold M which is endowed with a Poisson bracket on ^(}) is

called a Poisson manifold. These basic algebraic properties will be employed
as much as possible so that a specific form for the bracket need not be

introduced and used explicitly. For the relativistic generalization, as with the

usual Poisson bracket, the bracket of two functionals of x m and p m may be

formally defined as

{P,Q} 5
- P

- x m
- Q

- p m
2

- P

- p m
- Q

- x m

If P and Q are scalar functions, {P, Q} is invariant under Lorentz transforma-

tions, and has all the usual properties of the bracket (Barut, 1980). This

is assumed to remain valid for any other form of bracket which might
be considered.

The two properties which are expressed by equations (1) and (2) will

be used frequently. Let P be a Poisson manifold. If H P ^(3), then there

is a unique vector field XH on P such that
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XHG 5 {G,H } (3)

for all G P ^(3). The vector field XH is called the Hamiltonian vector field

of H. This is a consequence of the fact that any derivation on ^(3) is

represented by a vector field.

Any function H P ^ will define a dynamical system on M by the equation

dF

dt
5 {F,H } (4)

Finally, in a set of local coordinates (w a) for M, the coordinate expression

for the Poisson bracket {F,G} is

{F,G} 5 XGF 5 {w a,G}
- F

- w a (5)

2. POISSON BRACKETS AND THE MAXWELL EQUATIONS

Let the local coordinate variables on the manifold be written in the form

(w a) 5 (x i, v i), where i 5 1,2,3. Indices are raised and lowered in a trivial

way with d ij, and repeated indices are summed over. Here the x i may be

interpreted as position coordinates and v i represent velocity. The fundamental

Poisson brackets are postulated to be

{xi , xj} 5 0, m {xi , vj} 5 d ij (6)

The equations of motion which are based on these variables using (4) are

given as follows:

xÇ i 5 {x i, H } 5 v i, mvÇ i 5 m {v i, H } 5 F i (7)

Notice that this implies that the Hamiltonian dynamical system is a second-

order differential system.

Differentiating the second bracket in (6) with respect to time gives

the equation

{xÇ i , vj} 1 {xi , vÇ j} 5 0 (8)

Multiplying both sides by m and then using the equations of motion, one

obtains

m {xÇ i , xÇ j} 1 {xi , Fj} 5 0 (9)

Since the bracket is bilinear, this equation can be put into the form

{{xi , Fj}, xk} 1 m {{xÇ i , xÇ j}, xk} 5 0 (10)

Substituting xÇ i , xÇ j , and xk into the Jacobi identity, one obtains
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{{xÇ i , xÇ j}, xk} 1 {{xÇ j , xk}, xÇ i} 1 {{xk , xÇ i}, xÇ j} 5 0

Since the bracket {xÇ j , xk} is proportional to d jk, this equation reduces to

the constraint

{{xÇ i , xÇ j}, xk} 5 0

Substituting this into (10), one obtains

{xk , {xi , Fj}} 5 0

The tensor {xi , Fj} is therefore antisymmetric on account of the bracket

property. This can be expressed in its dual form by the relation

{xi , Fj} 5 2
1

m
e ijkHk (11)

where Hk is the component of a pseudotensor H, which will depend on the

coordinates of M, and possibly time.
It has been shown that {xk , {xi , Fj}} 5 0, so when the equation for Hk

is substituted, a bracket which contains Hk can be obtained

{xl , Hk} 5 0 (12)

On account of the basic relations (6), this means that the vector H depends

only on the position and time of the particle. The equation above and (6)

imply that Fi is at most linear in the velocities, and so one may write

Fi (x) 5 Ei (x) 1 e ijkv
jH k(x) (13)

This is just the usual Lorentz force law when the electric charge is unity. It

defines the electric field, and so, using bilinearity and the derivation property,

one obtains

{xi ,Ej 1 e jakvaHk} 5 {xi , Ej} 1 e jak{xi , vaHk}

5 {xi , E j} 1 e jak{xi , va}Hk 1 e jakva{xi , Hk}

5 {xi , E j} 1
1

m
e jikHk (14)

Using (11) on the right-hand side of (14), one obtains the expression

2
1

m
e ijkHk 5 {xi , Ej} 1

1

m
e jikHk 5 {xi , Ej} 2

1

m
e ijkHk

Therefore, the vectors E and H are not independent, and this implies

{xi , Ej} 5 0 (15)

This implies that the E vector, as is the case with the H vector, depends only
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on the position coordinate and time. Summarizing the two equations which

are needed to proceed, one has

{xi , Fj} 5 2 m {xÇ i , xÇ j}, {xi , Fj} 5 2
1

m
e ijkHk (16)

These equations can clearly be combined, and this leads to a new equation
for Hk in terms of the bracket,

e ijkHk 5 m 2{xÇ i , xÇ j} (17)

or

e ijse ijkHk 5 m 2 e ijs{xÇ i , xÇ j}

This gives the following expression for H s:

H s 5
1

2
m 2 e sij{xÇ i , xÇ j} (18)

Applying the Jacobi identity to the variables xÇ l , xÇ j , and xÇ k and then contracting

indices with e ljk, one finds

e ljk{xÇ l , {xÇ j , xÇ k}} 5 0

Replacing the bracket {xÇ j , xÇ k} with Hs using equation (18) gives another
bracket

{xÇ l , e ljk{xÇ j , xÇ k}} 5
2

m 2 {xÇ l , Hl} 5 0

One obtains the equation

{xÇ l , H l} 5 0 (19)

Using the equation of motion and the fact that H l does not depend on xÇ i , one

obtains the first important result

{Hl , xÇ l} 5 {wa , xÇ l}
- Hl

- wa

5 {xa , xÇ l}
- H l

- xa

5
1

m

- Hl

- xl

(20)

Since (19) implies that equation (20) vanishes, this gives the following Max-

well equation:

= ? H 5 0 (21)

To obtain a second equation, let us start with the equation for Hs , which is



1630 Bracken

Hs 5
1

2
m 2 e sij{xÇ i , xÇ j} (22)

Differentiating both sides of this equation with respect to the variable t,
one obtains

- Hs

- t
1

- Hs

- xj

xÇ j 5
m 2

2
e sij{xÈ i , xÇ j} 1

m 2

2
e sij{xÇ i , xÈ j} 5 m 2 e sij{xÈ i , xÇ j}

Next, by substituting the equation Fk 5 mxÈ k 5 Ek 1 e kalxÇ aHl , one can write

the right-hand side of this equation in the form

m e sij{Ei 1 e ialxÇ aH l , xÇ j}

5 m e sij{Ei , xÇ j} 1 m e sij e ial{xÇ aHl , xÇ j}

5 m e sij{Ei , xÇ j} 2 m e isj e ial{xÇ aHl , xÇ j}

5 m e sij{Ei , xÇ j} 2 m {xÇ sHj , xÇ j} 1 m {xÇ jH
s, xÇ j}

5 m e sij{Ei , xÇ j} 1 m {xÇ j H s, xÇ j} 2 m {xÇ s Hj , xÇ j}

5 m e sij{Ei , xÇ j} 1 m {H s, xÇ j}xÇ j

1 m {xÇ j , xÇ j} H s 2 m {xÇ s, xÇ j} Hj 2 mxÇ s{Hj , xÇ j}

The second to last term on the right-hand side of this equation is zero

by symmetry after applying the equation for Hj. The Maxwell equation for
Hj can be substituted in the form {Hk , xÇ k} 5 0. Using the coordinate expression

for the Poisson bracket, the entire equation above for the Poisson bracket

takes the form

- Hs

- t
1

- Hs

- xj

xÇ j 5 2 e sji
- Ei

- xj

1
- Hs

- xj

xÇ j (23)

Simplifying this, one obtains the following Maxwell equation in the usual

form:

- H

- t
1 = 3 E 5 0 (24)

The Maxwell equations are invariant with respect to Lorentz transforma-

tions when one puts t 5 x 0 and one restricts oneself to the homogeneous

equations (Misner et al., 1973). One can define a Maxwell 2-tensor or 2-

form by defining the skew-symmetric matrix
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Fab 5 3
0 2 E1 2 E2 2 E3

E1 0 H3 2 H2

E2 2 H3 0 H1

E3 H2 2 H1 0 4
with

F 5 Fab dxa Ù dxb (25)

This is a two-form in Minkowski space with coordinates x 0, x 1, x 2, x 3 and

one can assume that the Minkowski metric is

ds ^ ds 5 2 dx0 ^ dx0 1 dx1 ^ dx1 1 dx2 ^ dx2 1 dx3 ^ dx3

The metric on M0 induces a Hodge * -operator

* : L pT*(M0) ® L 4 2 pT*(M0)

Recall that if

a 5 a i1...ip dxi1 Ù . . . Ù dxip

then

( * a )j1...j4 2 p 5 6 a i1...ip

where {i1, . . . , ip , j1, . . . ,j4 2 p} is an odd or even permutation of {0, 1, 2,

3} which determines the above sign, and

a i1...ip 5 g i1k1g i2k2 . . . g ipkp a k1...kp

This introduces some minus signs into the usual Euclidean * -formalism.

Therefore * has eigenvalues 6 i in this case. Considering C-valued 2-forms

on M0, one has

L 2T*(M0) ^ C 5 L 2
1 (M0) ^ L 2

2 (M0),

where L 2
1 and L 2

2 denote the 1 i and 2 i eigenspaces. So any two-form v
has a decomposition v 5 v + 1 v 2 , where

v + 5
1

2
( v 2 i * v ), v 2 5

1

2
( v 1 i * v )

satisfy * v + 5 i v , * v 2 5 2 i v . One says that v is self-dual if v 5 v + and

anti-self-dual if v 5 v 2 . We now have the following result:

Theorem. (1) Maxwell’ s homogeneous equations become
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dF 5 0, d*F 5 0 (26)

(2) If the Maxwell tensor is rewritten as F 5 F + 1 F 2 , then Maxwell’ s

equations become

dF+ 5 dF 2 5 0 (27)

The proof of this is simply a translation of the notation; d* is the Hodge

adjoint to d and is 6 * d * .

3. GENERALIZED PARTICLE EQUATIONS

It has been shown in paper I that by postulating a set of Poisson bracket

relations, as well as the assumption that vÇ i and IÇ a are functions of x, v, I, and

t only, the equations of motion for the particle must be of the form

mvÇ i 5 F ij(x, t, I )v j 1 F i0(x, t, I ) (28)

IÇ a 5 2 A ia(x, t, I )v i 2 A 0a(x, t, I ) (29)

where the fields F m n (x, t, I ) 5 2 F n m (x, t, I ) and the potentials satisfy a set

of consistency conditions which are given in paper I.

It is to be shown next that the equations of motion can be written as

Hamilton’ s equations of motion using a Hamiltonian H. The problem which

has internal degrees of freedom has a Hamiltonian H of the form (Stern and
Yakushin, 1993)

H 5
m

2
v iv i 1 HI (x, I) (30)

The equations of motion will be shown to arise from the system

IÇ a 5 {I a, H }, xÇ j 5 {x j, H }, vÇ j 5 {v j, H } 1
- v j

- t
(31)

To do this, one defines the fields

F ij 5 2 F ji 5 m 2 {v i, v j}, A ia 5 m {v i, I a} (32)

and suppose the following Poisson brackets for the interaction Hamiltonian

HI hold:

{v j, HI} 5
1

m
F j0 2

- v j

- t
, {I a, HI} 5 2 A 0a (33)

Consider the first bracket,
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IÇ a 5 H I a,
m

2
v iv i 1 HI J 5

m

2
{I a, v iv i} 1 {I a, HI}

5 m {I a, v i}v i 2 A 0a 5 2 A ia v i 2 A 0a (34)

This is the second equation of motion. The second equation of (31) gives

xÇ j 5 {x j, H } 5 H x j,
m

2
v iv i 1 HI J 5

m

2
{x j, v iv i} 1 {x j, HI}

5 m {x j, v i}v i 1 {x j, HI} 5 v j (35)

The final bracket then gives

vÇ j 2
- v j

- t
5 H v j,

m

2
v iv i 1 HI J 5

m

2
{v j, v iv i} 1 {v j, HI}

5 m {v j, v i}v i 1 {v j, HI}

thus,

vÇ j 2
- v j

- t
5 2

1

m
F ijv i 1

1

m
F j0 2

- v j

- t

From this we obtain the first equation of motion,

mvÇ j 5 F jiv i 1 F j0.

4. RELATIVISTIC HAMILTONIAN

From the extremal property of the integral

I 5 #
t2

t1

L(qj , qÇ j , t) dt

one obtains the usual Lagrange equations of motion (Landau and Lifshitz,
1975),

d

dt 1 - L

- qÇ j 2 2
- L

- qj

5 0, j 5 1, . . . , n (36)

In classical mechanics, the n Lagrange equations above for the n coordinate

functions can be transformed into 2n Hamiltonian equations as follows. One

defines the generalized momenta
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pk 5
- L

- qÇ k

and solves this equation for qÇ k 5 qÇ k(qk , pk , t). If this can be done, one can

express the Hamiltonian function

H ( pj , qj) 5 o
j

pjqÇ j 2 L (37)

as a function of qk and pk. One then obtains the canonical equations

pÇ k 5 2
- H

- qk
, qÇ k 5

- H

- pk

The function which satisfies (36) for classical electrodynamics is given as

L 5 m0(1 2 ! 1 2 v iv i) 1 e (v ? A ) 2 e w

where m0 is the rest mass and one takes units in which c 5 1 so that all

components of the velocity are less than one. The potentials can be neglected
or absorbed in HI. This equation reduces to the expression for L, which in

the nonrelativistic limit is

LNR 5
1

2
m0v

2 1 e (v ? A ) 2 e w

The conjugate momenta are then

pj 5 1 m0v

! 1 2 v2
1 eA 2 j

The Hamiltonian of the system is then

H 5 m0 1 1

! 1 2 v iv i
2 1 2 1 HI (38)

This is essentially equal to the total energy, kinetic plus potential, of the

particle, and will play a role in developing the relativistic extension of the
formalism next.

5. RELATIVISTIC EXTENSION OF EQUATIONS

A specific relativistic Hamiltonian has been considered in the previous

section. This Hamiltonian can be used to generate a set of equations of motion

in a relativistic framework. Suppose then that the system admits a Hamiltonian

H, and the equations of motion can be written accordingly,
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IÇ a 5 {I a, H }, xÇ j 5 {x j, H }, vÇ j 5 {v j, H } 1
- v j

- t
(39)

For the Poisson brackets which involve x and v, one now postulates the

following relations:

{x i, x j} 5 0, {x i, v j} 5
1

m0

d ij

One can now introduce internal degrees of freedom, which one denotes by

I a 5 I a(t), a 5 1, . . . , D, and assume the following Poisson bracket relations
hold for the I a:

{I a, I b} 5 C ab(I ), {x i, I a} 5 0 (40)

The fields F ij and Aia are also to be defined in terms of these brackets. This

can be done in the following way:

F ij 5 2 F ji 5 m0{v i, v j}, A ia 5 m0{v i, I a} (41)

It has been shown that in units such that c 5 1, a relativistic Hamiltonian

can be written down in the following way:

H 5 m0 1 1

! 1 2 v iv i
2 1 2 1 HI (x, I ) (42)

In this equation, one can regard the HI (x, I ) term in H as an interaction

Hamiltonian, and one assumes the following Poisson brackets for it:

{v j, HI} 5
1

m0

F j0 2
- v j

- t
, {I a, HI} 5 2 A 0a (43)

The problem of evaluating an expression for the basic bracket which involves

the v-dependent part of the Hamiltonian can be solved by applying the
following expansions:

(1 2 y) 2 1/2 5 1 1 o
`

s 5 1

(2s)!

22ss!2 y s (44)

(1 2 y) 2 3/2 5 1 1 o
`

s 5 1

(2s)! (2s 1 1)

22ss! 2 y s (45)

To evaluate the bracket {I a, H }, consider the v-dependent part first and

proceed inductively. The following bracket is easy to evaluate:

m0{I a, v iv i} 5 m0v
i{I a, v i} 1 m0{I a, v i}v i 5 2 2v iA ia

Suppose the following bracket relations hold up to order s 2 1:
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m {I a, (v i v i)s 2 1} 5 2 2(s 2 1)(v jv j)s 2 2v iA ia (46)

Then, using this, one can prove that

m0{I a, (v j v j)s} 5 (v iv i)m0{I a, (v jv j)s 2 1} 1 m0{I a, v i v i}(v jv j)s 2 1

5 2 2(s 2 1)v iA ia(v j v j)s 2 1 2 2v iAia(v jv j)s 2 1 (47)

5 2 2sviAia(v j v j)s 2 1

The entire bracket which contains I a and the first part of the Hamiltonian

can be expanded out and simplified using (46) and (47). All of the details

will be shown for completeness:

m0 H I a, o
`

s 5 1

(2s)!

22ss!2 (v iv i)s J 5 2 o
`

s5 1

(2s)!

22ss!2 2s (v iv i)s 2 1(v jA ja)

5 2 o
`

s 5 1

(2s 2 1)!

22s 2 2(s 2 1)!2 (v iv i)s 2 1(v jAja)

5 2 o
`

q 5 0

(2q 1 1)!

22qq!2 (v iv i)q(v jA ja)

5 2 1 2 o
`

q 5 1

(2q)!

22qq!2 (2q 1 1)(v iv i)q(v jA ja)

5 2 A ja v j

(1 2 v iv i)3/2

Therefore, the whole bracket is given by the expression

IÇ a 5 {I a, H } 5 2
A jav j

(1 2 v iv i)3/2 2 A0a (48)

Consider next the second of the equations in (39), that is,

xÇ j 5 {x j, H } 5 m0{x j, (1 2 v iv i) 2 1/2} 5 o
`

s 5 1

(2s)!

22ss!2 m0{x j, (v iv i)s}

Applying the fundamental bracket {x i, v j}, this expression can be simplified

in the following way. Using property (ii) of the bracket, one obtains

{xj , v iv i} 5
2

m0

v j

Proceeding inductively as in the previous case, one can write
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{x j, (v iv i)n} 5 (v sv s) {x j, (v iv i)n 2 1} 1 {x j, (v iv i)}(v sv s)n 2 1

5
2

m0

(n 2 1) v j(v iv i)n 2 1 1
2

m0

v j(v iv i)n 2 1

5
2

m0

n vj(v iv i)n 2 1

Therefore, the second equation of motion is

xÇ j 5 {x j, H } 5 o
`

s5 1

(2s 2 1)!

22s2 2(s 2 1)!2 (v iv i)s 2 1v j 5
v j

(1 2 v iv i)3/2 (49)

Consider the final equation of motion in the set (39),

vÇ j 5 {v j, H } 1
- v j

- t

5 m0 {v j, (1 2 v iv i) 2 1/2} 1 {v j, HI (x, I )} 1
- v j

- t
(50)

5 m0{v j, (1 2 v iv i) 2 1/2} 1
1

m0

F j0

In this case, the basic bracket for F ij is required to simplify this. To proceed
inductively, suppose that

m0{v j, (v iv i)n 2 1} 5 2 (n 2 1)m 2 1
0 F jiv i(v kv k)n 2 2

and applying property (ii), one obtains

m0{v j, (v iv i)s} 5 m0(v
kv k){v j, (v iv i)s 2 1} 1 m0{v j, v iv i}(v kv k)s 2 1

5 2(s 2 1)m 2 1
0 F jiv i(v kv k)s 2 1 1 2m 2 1

0 F jiv i(v kv k)s 2 1

5 2sm 2 1
0 F jiv i(v kv k)s 2 1

Therefore, this bracket becomes

m0 H v j, o
`

s 5 1

(2s)!

22ss!2 (v iv i)s J 5 m 2 1
0 o

`

s 5 1

(2s 2 1)!

22s 2 2(s 2 1)!2 (v iv i)sF jkv k

5
F jkv k

m0(1 2 v iv i)3/2

Collecting terms, the last equation of motion can be written in the follow-

ing form:



1638 Bracken

m0vÇ
j 5 F jk v k

(1 2 v iv i)3/2 1 F j0 (51)

Let us summarize these equations after making use of (49). The system can
be written in the form

xÇ j 5
v j

(1 2 v iv i)3/2 (52)

IÇ a 5 2 A jaxÇ j 2 A 0a (53)

m0vÇ
j 5 F jkxÇ k 1 F j0 (54)

Here, the fields F m n and the potentials A a
m are functions of the internal

coordinates I a as well as the space-time coordinates x m . In some sense, there

is a resemblance to a Kaluza±Klein theory. One would like to reduce the

theory to one which is defined on a four-dimensional space-time. In such a

case, it is necessary to make certain assumptions about the fields, such as

they factorize into space-time-dependent and internal space-dependent terms.
It was shown in paper I that in the nonrelativistic limit, the fields must be

consistent with the conditions

D l F m n 1 D m F n l 1 D n F l m 5 0

d dF
m n C ad 5 D m A n a 2 D n A m a

d dC
adA m d 5 d d A m bC ad 2 d dA

m aC bd (55)

The derivative D l in these equations is defined by the equation

D m 5 - m 2 A m d d d

Here, - 0 and - j denote partial derivatives with respect to the coordinates t
and xj , and d a denotes the derivative with respect to I a. Most of these equations

just use the basic brackets and their Jacobi identity for their derivation. In
fact, the equations which require the equations of motion (52)±(54) for their

derivation also hold. For example, to show that the third equation holds, one

begins with

{IÇ a, I b} 1 {I a , IÇ b} 5 d dC
ab (I )IÇ d

and upon substituting the equations of motion, and using the derivation

property,

2 {A jaxÇ j,I b} 2 {A 0a, I b} 2 {Ia, A jbxÇ j} 2 {I a, A 0b} 5 2 d dC
ab(I ) A jdxÇ j

2 d dC
ab (I )A 0d

The left-hand side can be expanded out as
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2 {A ja, I b}xÇ j 2 A ja{xÇ j, I b} 2 {A 0a, I b} 1 {A jb, I a}xÇ j 1 A ib {xÇ i, I a}

2 {I a, A 0b}

Using the bracket

H 1

(1 2 v iv i)3/2, I b J 5 H o
`

n 5 1
Qn(v

iv i)n, I b J 5 2 o
`

n 5 1
(2n)Qn(v

jv j)n 2 1(v sAsb)

one finds that

2 A ja H v j

(1 2 v iv i) 3/2, I b J 1 A kb H v k

(1 2 v iv i)3/2,I
a J

5 2
A jaA jb

m0 (1 2 v iv i)3/2 2 A kav k H 1

(1 2 v iv i)3/2,I
b J

1
A jbA ja

m0 (1 2 v iv i)3/2 1 A kbv k H 1

(1 2 v iv i)3/2,I
a J 5 0

If, as in the nonrelativistic case, one assumes that for arbitrary functions A
and B of the variables x and I one can write

{A, B} 5 C ab(I ) d aA d bB

the equation above simplifies to

2 C sb d sA
iaxÇ i 2 C ap d pA

ibxÇ i 2 C pb d pA
0a 2 C at d t A

0b 5 2 d dC
abAidxÇ i

2 d dC
abA0d

Equating coefficients of the xÇ i term and the xÇ i-independent term on both sides
of this equation gives the final equation in (55),

C sb d sA
ia 1 C at d t A

ib 5 d dC
abAid

C sb d s A
0a 1 C at d t A

0b 5 d dC
abA

0d

which is the third equation in (55) with m 5 i and m 5 0, respectively.

For example, define !a 5 A a(x, I ) to be the one-form on Minkowski

space, with components A m a. For A a one chooses

A a(x, I ) 5 gCab(I )Ab(x) (56)

where g is a constant, and Ab is a one-one form on space-time. Equation (56)

satisfies the third equation in (35) for all values of x and I. Upon substituting

the ansatz into the second equation, it has been shown in paper I that
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C ab(I ) 1 1g d b ^(x, I ) 2 dAb(x) 2
g

2
d bC

de(I ) Ad (x) Ù Ae(x)) 5 0 (57)

Here ^ is the two-form on Minkowski space with components F m n . Also d
and Ù denote the exterior derivative on Minkowski space and the exterior

product, respectively. Ignoring I-independent terms, it has also been shown

that (57) is solved by

1

g
^(x, I ) 5 dAaI

a 1
g

2
C ab(I )Aa Ù Ab

Let us summarize what has been done here. It has been shown that the

Lorentz force law and a pair of Maxwell equations without sources can be

obtained by postulating a very simple Poisson bracket structure on the local
coordinates of the phase space manifold of a particle. An elementary symmetry

transformation then yields the other pair of equations. It has been shown

how to develop a relativistic generalization by postulating essentially the

same Poisson brackets and applying them to a relativistic Hamiltonian to

obtain the system of equations of motion. It has also been noted that the

same consistency conditions which were developed for the nonrelativistic
case can be derived in this context as well.
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